• 帮助中心

  • ADADADADAD

    中考数学总结

    中考数学总结[ 10号文库 ]

    10号文库 时间:2024-10-25 13:02:18 热度:0℃

    作者:文/会员上传 下载docx

    简介:

    第一篇:中考数学总结九年级数学教学工作总结周艳本学期我仍担任九年级(1)班、(2)班的数学教学工作,在本学期教学期间我认真备课、上课、听课,及时批改作业、讲评作业,做好课后辅导工作,广泛涉取各种知识,

    以下为本文的正文内容,请查阅,本站为公益性网站,复制本文以及下载DOC文档全部免费。

    第一篇:中考数学总结

    九年级数学教学工作总结

    周艳

    本学期我仍担任九年级(1)班、(2)班的数学教学工作,在本学期教学期间我认真备课、上课、听课,及时批改作业、讲评作业,做好课后辅导工作,广泛涉取各种知识,不断提高自己的业务水平。,充实自己的头脑,形成比较完整的知识结构,严格要求学生,尊重学生,使学生学有所得,学有所用,不断提高,从而不断提高自己的教学水平和思想觉悟,并顺利完成教育教学任务。下面我就这一学期中所做的一些工作做一下小结。

    一、学生情况

    九年级是初中三年的关键时期,学生取得好成绩才是最重要的事情。本学期九年级(1)班的黄仙、李小娟、杨伟沙等,他(她)们学习态度端正,学习肯努力,但其他绝大部分同学学习积极性不高,整体学风差,因此本班主要的工作重心是思想方面的引导及学风的树立。(2)班的学生除个别同学外,整体班风、学风都很浓,学习数学的积极性也很高,只需要做好复习工作既可以。

    二、教学工作方面

    1、备好课。本学期我每一节课前都认真钻研教材,对教材的基本思想、基本概念,了解教材的结构,重点与难点,掌握知识的逻辑,能运用自如,知道应补充哪些资料,怎样才能教好。了解学生的兴趣、需要、方法、习惯,学习新知识可能会有哪些困难,采取相应的预防 1 措施。考虑教法,解决如何把已掌握的教材传授给学生,包括如何组织教材、如何安排每节课的活动。

    2、在课堂上,组织好课堂教学,关注全体学生,注意信息反馈,调动学生的学习积极性,课堂语言简洁明了,课堂提问面向全体学生,注意引发学生学数学的兴趣,课堂上讲练结合,精讲多练。

    三、总复习工作面向全体学生

    1、课堂上注重学生当堂训练,教师精心讲解,加强学生解题过程训练。如果只分析,优等生还可以,但有些学生就可能跟不上,而且让学生板演还能让不同层次学生都有机会表现,因为学生板演可为教师提供反馈信息,如暴露知识上的缺欠,可弥补讲课中的不足,同时,学生板演中出现的优秀解题方法,为教师提供向学生学习的良好机会;另外也可以培养学生胆识,培养学生独立思考能力,促进记忆。

    2、注重学生解题中的错误分析

    在总复习中,学生在解题中出现错误是不可避免,教师针对错误进行系统分析是重要的,首先可以通过错误来发现教学中的不足,从而采取措施进行补救;错误从一个特定角度揭示了学生掌握知识的过程,是学生在学习中对所学知识不断尝试的结果,教师认真总结,可以成为学生知识宝库中的重要组成部分,使学生领略解决问题中的探索、调试过程,这对学生能力的培养会产生有益影响。

    首先,应预防错误的发生,要了解不同层次学生对知识的掌握情况,调查中发现:(1)审题能力差、(2)分析能力差、(3)缺少创新思维。并针对以上情况进行了单独训练,效果较好。其次,在复习过程中,提问是重要复习手段,对于学生错误的回答,要分析其原因进行有针对性的讲解,这样可以利用反面知识巩固正面知识。

    最后,课后的讲评要抓住典型加以评述。事实证明,练是实践,评是升华,只讲不评,练习往往走过场。

    四、自我提高

    本学期在工作中不断积累经验,并及时形成了材料。在中考复习中,发现问题及时进行小结并进行有针对性的训练。不断提高自身业务素质。现在网络资源非常丰富,在网上可以找到很多有关中考的题和信息,给中考复习带来了很大的方便。对学生进行知识的传授,激发和培养学生的学习兴趣,都有很大的帮助。

    在本学期我严格要求自己,在教学中虚心向别的教师请教。并利用业余时间了解先进的教育教学方法,学习与借鉴对自己有用的教育学生的方法,加强理论学习,努力提高自己的教育理念与自身素质。

    总之,初三总复习是重要的教学阶段,是学生再学习的过程,是中考前很重要的一个阶段,也是学生从整体上认识初中数学的一个阶段,是学生成绩迅速提高的一个阶段。在这个阶段,我首先注重了基础知识的复习,然后进行了能力的提高,最后进行了综合能力的提高。通过成绩来看,两个班都取得较好的成绩,(1)班平均分为:分;及格率为: 优生率为:;(2)班平均分为:分;及格率为: 优生率为: ;整个年级全线排名是平均分第5名,及格率第4名,优生 3 率第5名。这是所有学科中最好的成绩。今后我将继续努力,争取取得更佳的成绩。

    第二篇:二年级数学中考总结

    数学期中考试总结

    二年级数学组

    一、基本情况分析

    数学期中考试已经结束了。全年级数学平均成绩86.153分,优秀率72.8%,及格率94.3%,100分人数3人,5个教学班平均成绩不太均衡,最高与最低班级积分相差13.7分。从整体上看比去年期末成绩进步很大,试卷中涵盖的知识内容全面,重视基础知识和基本技能的培养。学生的计算能力有所提高,而且题型丰富,卷面布局更注重了低年级学生心理需求,体现人文性和生活性。计算准确率达到93%,画图正确率达到98%。不足之处个别学生的口算、计算能力仍需加强和对旧知的巩固,更重要的是注重培养低年级学生的审题能力,个别学生仍有丢题现象或把图形个数数错,这些都是要注意的学习习惯问题。应用题中个别学生的思维能力、审题能力有待提高和培养。

    二、存在的主要问题

    1.学生粗心大意、数学学习习惯不好。

    一是书写格式不规范,二是学生对所写的答案,认真检查的习惯差,比如计算符号,数字抄错,如原式是“+”,到第二步就写成“×”,数字17到第二步就写成27等等,本应不该出现的错误,竟然有相当一部分学生失误。

    2.计算能力有待提高。

    一些基本计算失误率高,计算方法、技巧掌握不够好。如24-20÷4应先算除法,再算减法,有85%的学生先算减法,再算除法,导致失分。

    3.对概念的理解不深。

    部分同学在回答填空题和判断题时对概念理解不深, 对定义的理解比较模糊,一些概念混淆不清。如陀螺的运动是旋转现象,有些学生当成平移现象。

    4.学生分析解决问题的能力不强。

    失分最严重的就是解决问题,由于学生分析问题的能力不强,不能很好的理解题意,所以失分较为严重.好多学生根本没有理解自己求出来的是什么,分析和解决问题的能力不强。

    三、后半期努力方向 1.重视知识的形成过程。

    备好课,向40分钟要效益。“剩饭难热”,第一次就做熟。不让学生吃夹生饭。传统教学中“重结果,轻过程”的问题现在还没有得到根本解决。本次考试学生的答题也反映出了教师在教学中只重视学生对知识结果的记忆,忽视让学生经历知识的形成过程的问题。

    2.加强操作能力的培养。

    在小学数学教学中,作图能力的培养不能忽视。重视操作不仅有利于学生理解和掌握基础知识,而且对发展学生的空间观念有着重要的意义,还能为高年级数学学习奠定基础。

    3.加强学生解决问题能力的培养。

    培养学生的数学应用意识和解决问题的能力是小学数学教学的重要任务。我们在今后的教学中要重视应用题解题思路和分析数量关系的训练,在应用题的条件和问题之间建

    立起有效的联系。重视数学与生活的联系,向现实生活延伸,把培养学生的数学应用意识落到实处。

    4.重视学生学习习惯的培养。

    如果只关注学生能否正确解题,而忽视对学生良好的学习习惯的培养,是数学教育的严重失误。学生答题字迹潦草,格式混乱,审题不认真,计算不细心,反映出学生学习态度不够端正,做事浮躁,责任意识淡薄。本次测试学生的过失性失分相当普遍,严重地影响了学生的成绩。因此,我们在教学中要加强书写训练,格式指导,严格要求,严格监控,让每个学生养成认真审题,缜密思考,仔细计算,自觉检验的良好习惯。

    5.注重分层次教学。

    首先教师把问题分层。把有难度的问题留给优等生,把简单的、需要重复的问题留给学困生,让他们各有所得,发挥其所长。其次为了提高课堂教学质量,让学生养成认真听讲的好习惯,更主要的是端正了坐姿,积极思考问题,教师也能及时调控课堂发现问题,解决问题。努力激发学生学习数学的兴趣,有了兴趣才是提高质量的保证。还有及时鼓励和关注,加强学生的养成教育,建立奖励机制。根据低年级学生特点,每天进行小组竞赛活动。周末数学都有分层作业,每次都留有思考题,发挥优等生的特长,提高数学的思维能力和灵活运用知识的能力。

    第三篇:中考数学总结论文

    优化复习教学 提高复习效率

    ------2024中考数学总结

    湖北口中学

    鄢吉明

    一、成绩情况

    本次中考,在全体师生的共同努力下,数学整体还不错,但班级间有差异,我校数学学科成绩上有效分46人,吻合39人,综合名次居全县第九位,我所任的两个班有效分21人,吻合18人。二、一些不成熟的复习方法

    1、在章节复习中注重知识的转化

    在复习过程中,不仅应该要求学生对所学的知识、典型的例题进行反思,而且还应该重视对学生巩固所学的知识由“量”到“质”的飞跃这一转化过程。按常规的方式进行复习,通常是按照课本的顺序把学生学过的知识,如数学概念、法则、公式和性质等原本地复述梳理一遍。这样做学生感到乏味又不易记忆。针对这一情况,我在复习概念时,采用章节知识归类法,即先列出所要复习的知识要点,然后归类排队,这样做可增加学生复习的兴趣,增强学生的记忆和理解,最主要的是起点了把章节知识由量到质的飞跃,实现知识间的转化。

    2、在例题讲解中注重知识的变化

    复习课例题的选择,应是最有代表性和最能说明问题的典型习题。应能突出重点,反映大纲最主要、最基本的内容和要求。对例题进行分析和解答,发挥例题以点带面的作用,有意识、有目的地在例题的基础上作一系列的变化,达到能挖掘问题的内涵和外延、在变化中巩固知识、在运动中寻找规律的目的,实现复习的知识从量到质的转变。

    例如,在复习二次函数的内容时,我选了这样一个例题:二次函数的图象经过点(0,0)与(-1,-1),开口向上,且在x轴上截得的线段长为2。求它的解析式。因为二次函数的图象抛物线是轴对称图形,由题意画图后,不难看出(-1,-1)是顶点,所以可用二次函数的顶点式y=-a(x+m)2+k,再求得它的解析式。在数学中我对例题作了变化,把题目中的“开口向上”这一条件去掉,求解析式。再次变化后,此题可有两种情况(1)开口向上;(2)开口向下;所以有两个结论

    由于条件的不断变化,使学生不能再套用原题的解题思路,从而改变了学生机械的模仿性,学会分析问题,寻找解决问题的途径,达到了在变化中巩固知识,在运动中寻找规律的目的。从而在知识的纵横联系中,提高了学生灵活解题的能力。

    3、注重优化解题思路 一题多解有利于引导学生沿着不同的途径去思考问题,可以优化学生思维,因此要将一题多解作为一种解题的方法去训练学生。一题多解可以产生多种解题思路,要对多解进行比较,找出新颖、独特的最佳解才能成为名副其实的优解思路。在数学复习时,我不仅注意解题的多样性,还重视引导学生分析比较各种解题思路和方法,提炼出最佳解法,从而达到优化复习过程,优化解题思路的目的。如计算(6x+y/2)(3x-y/4),这是一题多项式的乘法运算,本题从表面上看无规律可找,其实从多项式系数看,发现第一个因式提出公因数2后,恰能构成平方差公式的模型,显然后一种解题思路优于前一种解题的思路。计算此题若把各因式计算后再相乘,很繁琐,若能把各因式逆用平方差公式,再计算、约分,可以迅速地求出结果。

    在复习的过程中加强对解题思路优化的分析和比较,有利于培养学生良好的数学品质和思维品质,能为学生培养严谨、创新的学风打下良好的基础。

    4、善于将知识习题归类

    考查同一知识点,可以从不同的角度,采用不同的数学模型,提出多种不同的命题,我在复习引导学生将习题归类,集中精力解决同类问题中的本质问题,总结出解这一类问题的方法和规律。

    通过归类训练,学生便能在平时的学习中,注意做有心人,加强方法的积累和归纳,并能分析异同,把知识从一个角度迁移到另一个角度,最终达到常规图形能熟悉、常规结论要记忆、类同方法全套用、独创解法受启发的层次,提高举一反

    三、触类旁通的能力。

    优化复习过程,提高复习效率,可以将学生从题海战术中解脱出来,使学生学得灵活,学得扎实,是一个行之有效的重要途径。

    三、不足之处

    从整体情况看,本届数学不仅保住了上届的成绩,还从初考时的全县末位上升到了第九位,从整套数学题来看,还是比较难的。我所任的两个班,一个中等,一个一直在后面,本次也不例外,究其原因,有以下几点:

    1、良好的班风是成绩的保证,我所任的两个班,其中一个便是。教师更换频繁,学生纪律涣散,两极分化极为严重,直接影响结果。

    2、我校地处鄂陕交界,经济条件落后,部分优生即使考上,家庭也无力供应,致使学生放弃努力。

    3、教师基本功也是成绩的保证,我校由于地处偏远,教师流动性大,对学生的教育脱节比较严重,到初三临时换教师,对学生也有影响。

    4、由于本人的能力有限,在短时间内无法将本班成绩大幅度提高,也是成绩不理想的一个重要原因。

    第四篇:安徽省中考数学知识点总结

    中考数学知识点大全

    1、一元二次方程根的情况:y=ax2 +bx+c

    △=b2-4ac 当△>0时,一元二次方程有2个不相等的实数根; 当△=0时,一元二次方程有2个相同的实数根; 当△<0时,一元二次方程没有实数根

    2、平行四边形的性质:

    ① 两组对边分别平行的四边形叫做平行四边形。

    ②平行四边形不相邻的两个顶点连成的线段叫他的对角线。③平行四边形的对边/对角相等。④平行四边形的对角线互相平分。菱形:①一组邻边相等的平行四边形是菱形

    ②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。矩形与正方形:

    ① 有一个内角是直角的平行四边形叫做矩形。② 矩形的对角线相等,四个角都是直角。③ 对角线相等的平行四边形是矩形。

    ④ 正方形具有平行四边形,矩形,菱形的一切性质。⑤一组邻边相等的矩形是正方形。多边形:

    ①N边形的内角和等于(N-2)180度

    ②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X

    28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上

    29、角的平分线是到角的两边距离相等的所有点的集合

    30、等腰三角形的性质定理 等腰三角形的两个底角相等(即等边对等角)

    31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

    32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°

    34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

    35、推论1 三个角都相等的三角形是等边三角形

    36、推论 2 有一个角等于60°的等腰三角形是等边三角形

    37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

    38、直角三角形斜边上的中线等于斜边上的一半

    39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等

    40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

    41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形

    43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

    44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

    45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

    46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形

    48、定理 四边形的内角和等于360°

    49、四边形的外角和等于360°

    50、多边形内角和定理 n边形的内角的和等于(n-2)×180°

    51、推论 任意多边的外角和等于360°

    52、平行四边形性质定理1平行四边形的对角相等

    53、平行四边形性质定理2平行四边形的对边相等

    81、三角形中位线定理

    三角形的中位线平行于第三边,并且等于它的一半

    82、梯形中位线定理

    梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2

    S=L×h

    83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d 84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d

    85、(3)等比性质:若a/b=c/d=…=m/n(b+d+…+n≠0),则(a+c+…+m)/(b+d+…+n)=a/b 86、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例

    87、推论

    平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

    88、定理

    如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

    89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

    90、定理

    平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

    91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)

    92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

    93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)

    94、判定定理3 三边对应成比例,两三角形相似(SSS)

    95、定理

    如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

    96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

    97、性质定理2 相似三角形周长的比等于相似比

    98、性质定理3 相似三角形面积的比等于相似比的平方

    99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

    100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

    101、圆是定点的距离等于定长的点的集合

    102、圆的内部可以看作是圆心的距离小于半径的点的集合

    分两条切线的夹角

    127、圆的外切四边形的两组对边的和相等

    128、弦切角定理 弦切角等于它所夹的弧对的圆周角

    129、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

    130、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等

    131、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

    132、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

    133、推论 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等

    134、如果两个圆相切,那么切点一定在连心线上

    135、①两圆外离

    d﹥R+r

    ②两圆外切

    d=R+r ③两圆相交

    R-r﹤d﹤R+r(R﹥r)

    ④两圆内切

    d=R-r(R﹥r)

    ⑤两圆内含

    d﹤R-r(R﹥r)136、定理 相交两圆的连心线垂直平分两圆的公共弦

    137、定理 把圆分成n(n≥3):

    ⑴依次连结各分点所得的多边形是这个圆的内接正n边形

    ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

    138、定理

    任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

    139、正n边形的每个内角都等于(n-2)×180°/n

    140、定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

    141、正n边形的面积Sn=pnrn/2

    p表示正n边形的周长

    142、正三角形面积√3a/4

    a表示边长

    143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 144、弧长计算公式:L=n兀R/180

    145、扇形面积公式:S扇形=n兀R^2/360=LR/2 146、内公切线长= d-(R-r)

    外公切线长= d-(R+r)

    三、常用数学公式

    公式分类

    公式表达式

    乘法与因式分解

    a2-b2=(a+b)(a-b)

    第五篇:中考数学知识点总结归纳资料

    博雅教育 一对一精英辅导 中考数学知识点归纳

    初中数学中考知识点归纳与总结

    整理者:龚老师

    ●第一部分 基本知识归纳

    ●第二部分 基本定理归纳

    ●第三部分 常用公式归纳

    ●第四部分 基本方法归纳

    ●第五部分 辅助线作法归纳

    整理时间:2024年11月13日

    地址:宜宾市翠屏区文重街30号

    联系人:林老师

    TEL:***

    --

    博雅教育 一对一精英辅导 中考数学知识点归纳

    初中数学中考知识点归纳与总结

    整理者:龚老师

    第一部分 基本知识归纳

    ㈠、数与代数

    A、数与式:

    1、有理数

    有理数:①整数→正整数/0/负整数;

    ②分数→正分数/负分数

    轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

    绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

    有理数的运算:

    加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。

    减法:减去一个数,等于加上这个数的相反数。

    乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

    除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

    乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。混合运算顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

    2、实数

    无理数:无限不循环小数叫无理数

    平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

    立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

    实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。

    3、代数式

    代数式:单独一个数或者一个字母也是代数式。

    合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成地址:宜宾市翠屏区文重街30号

    联系人:林老师

    TEL:***

    -博雅教育 一对一精英辅导 中考数学知识点归纳 一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

    4、整式与分式

    整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

    整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。幂的运算:

    整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

    公式两条:平方差公式;完全平方公式

    整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

    分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。方法:提公因式法、运用公式法、分组分解法、十字相乘法。

    分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

    分式的运算:

    乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。除法:除以一个分式等于乘以这个分式的倒数。

    加减法:①同分母的分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。

    分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。B、方程与不等式

    1、方程与方程组

    一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

    解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

    二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。解二元一次方程组的方法:代入消元法/加减消元法。

    一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程 1)一元二次方程的二次函数的关系

    大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情地址:宜宾市翠屏区文重街30号

    联系人:林老师

    TEL:***

    -博雅教育 一对一精英辅导 中考数学知识点归纳 况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了

    2)一元二次方程的解法

    大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解

    (1)配方法

    利用配方,使方程变为完全平方公式,在用直接开平方法去求出解(2)分解因式法

    提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解

    (3)公式法

    这方法也可以是在解一元二次方程的万能方法了。3)解一元二次方程的步骤:(1)配方法的步骤:

    先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式

    (2)分解因式法的步骤:

    把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式

    (3)公式法

    就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c 4)韦达定理

    利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a 也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用

    5)一元一次方程根的情况

    利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:

    I当△>0时,一元二次方程有2个不相等的实数根; II当△=0时,一元二次方程有2个相同的实数根;

    III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)

    2、不等式与不等式组

    不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。

    不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。②一个含有未知数的不等式的所有解,组成这个不等式的解集。③求不等式解集的过程叫做解不等式。

    地址:宜宾市翠屏区文重街30号

    联系人:林老师

    TEL:***

    -博雅教育 一对一精英辅导 中考数学知识点归纳 一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

    一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。③求不等式组解集的过程,叫做解不等式组。

    一元一次不等式的符号方向:

    在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。

    在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B,A+C>B+C 在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C 在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C

    所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;

    3、函数

    变量:因变量,自变量。

    在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

    一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。②当B=0时,称Y是X的正比例函数。

    一次函数的图象:①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。②正比例函数Y=KX的图象是经过原点的一条直线。③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。

    ㈡空间与图形

    A、图形的认识

    1、点,线,面

    点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。

    展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。

    截一个几何体:用一个平面去截一个图形,截出的面叫做截面。视图:主视图,左视图,俯视图。

    多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

    弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。

    地址:宜宾市翠屏区文重街30号

    联系人:林老师

    TEL:***

    -博雅教育 一对一精英辅导 中考数学知识点归纳

    2、角

    线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。

    比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。

    角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。

    角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

    平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

    垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。

    垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

    垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

    垂直平分线定理:

    性质定理:在垂直平分线上的点到该线段两端点的距离相等; 判定定理:到线段2端点距离相等的点在这线段的垂直平分线上 角平分线:把一个角平分的射线叫该角的角平分线。

    定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点

    性质定理:角平分线上的点到该角两边的距离相等 判定定理:到角的两边距离相等的点在该角的角平分线上 正方形:一组邻边相等的矩形是正方形

    性质:正方形具有平行四边形、菱形、矩形的一切性质

    判定:

    1、对角线相等的菱形

    2、邻边相等的矩形

    3、相交线与平行线

    角:①如果两个角的和是直角,那么称和两个角互为余角;如果两个角的和是平角,那么称这两个角互为补角。②同角或等角的余角/补角相等。③对顶角相等。④同位角相等/内错角相等/同旁内角互补,两直线平行,反之亦然。

    4、三角形

    三角形:①由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。②三角形任意两边之和大于第三边。三角形任意两边之差小于第三边。③三角形三个内角的和等于180度。④三角形分锐角三角形/直角三角形/钝角三角形。⑤直角三角形的两个锐角互余。⑥三角形中一地址:宜宾市翠屏区文重街30号

    联系人:林老师

    TEL:***

    -博雅教育 一对一精英辅导 中考数学知识点归纳 个内角的角平分线与他的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。⑦三角形中,连接一个顶点与他对边中点的线段叫做这个三角形的中线。⑧三角形的三条角平分线交于一点,三条中线交于一点。⑨从三角形的一个顶点向他的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高。⑩三角形的三条高所在的直线交于一点。

    图形的全等:全等图形的形状和大小都相同。两个能够重合的图形叫全等图形。全等三角形:①全等三角形的对应边/角相等。②条件:SSS、AAS、ASA、SAS、HL。

    勾股定理:直角三角形两直角边的平方和等于斜边的平方,反之亦然。

    5、四边形

    平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。②平行四边形不相邻的两个顶点连成的线段叫他的对角线。③平行四边形的对边/对角相等。④平行四边形的对角线互相平分。

    平行四边形的判定条件:两条对角线互相平分的四边形、一组对边平行且相等的四边形、两组对边分别相等的四边形/定义。

    菱形:①一组邻边相等的平行四边形是菱形。②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。

    矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。②矩形的对角线相等,四个角都是直角。③对角线相等的平行四边形是矩形。④正方形具有平行四边形,矩形,菱形的一切性质。⑤一组邻边相等的矩形是正方形。

    梯形:①一组对边平行而另一组对边不平行的四边形叫梯形。②两条腰相等的梯形叫等腰梯形。③一条腰和底垂直的梯形叫做直角梯形。④等腰梯形同一底上的两个内角相等,对角线星等,反之亦然。

    多边形:①N边形的内角和等于(N-2)180度。②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)

    平面图形的密铺:三角形,四边形和正六边形可以密铺。

    中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

    B、图形与变换:

    1、图形的轴对称

    轴对称:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

    轴对称图形:①角的平分线上的点到这个角的两边的距离相等。②线段垂直平分线上的点到这条线段两个端点的距离相等。③等腰三角形的“三线合一”。

    轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段/对应角相等。

    2、图形的平移和旋转

    平移:①在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。地址:宜宾市翠屏区文重街30号

    联系人:林老师

    TEL:***

    -博雅教育 一对一精英辅导 中考数学知识点归纳 ②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。

    旋转:①在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。②经过旋转,图形商店每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

    3、图形的相似

    比:①A/B=C/D,那么AD=BC,反之亦然。②A/B=C/D,那么A土B/B=C土D/D。③A/B=C/D=。。=M/N,那么A+C+…+M/B+D+…N=A/B。

    黄金分割:点C把线段AB分成两条线段AC与BC,如果AC/AB=BC/AC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比(根号5-1/2)。

    相似:①各角对应相等,各边对应成比例的两个多边形叫做相似多边形。②相似多边形对应边的比叫做相似比。

    相似三角形:①三角对应相等,三边对应成比例的两个三角形叫做相似三角形。②条件:AAA、SSS、SAS。

    相似多边形的性质:①相似三角形对应高,对应角平分线,对应中线的比都等于相似比。②相似多边形的周长比等于相似比,面积比等于相似比的平方。

    图形的放大与缩小:①如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。②位似图形上任意一对对应点到位似中心的距离之比等于位似比。

    C、图形的坐标

    平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴与Y轴统称坐标轴,他们的公共原点O称为直角坐标系的原点。他们分4个象限。XA,YB记作(A,B)。

    D、证明

    定义与命题:①对名称与术语的含义加以描述,作出明确的规定,也就是给出他们的定义。②对事情进行判断的句子叫做命题(分真命题与假命题)。③每个命题是由条件和结论两部分组成。④要说明一个命题是假命题,通常举出一个离子,使之具备命题的条件,而不具有命题的结论,这种例子叫做反例。

    公理:①公认的真命题叫做公理。②其他真命题的正确性都通过推理的方法证实,经过证明的真命题称为定理。③同位角相等,两直线平行,反之亦然;SAS、ASA、SSS,反之亦然;同旁内角互补,两直线平行,反之亦然;内错角相等,两直线平行,反之亦然;三角形三个内角的和等于180度;三角形的一个外交等于和他不相邻的两个内角的和;三角心的一个外角大于任何一个和他不相邻的内角。④由一个公理或定理直接推出的定理,叫做这个公理或定理的推论。

    ㈢统计与概率

    1、统计

    科学记数法:一个大于10的数可以表示成A*10N的形式,其中1小于等于A小于10,N是正整数。

    扇形统计图:①用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。②扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比。

    地址:宜宾市翠屏区文重街30号

    联系人:林老师

    TEL:***

    -博雅教育 一对一精英辅导 中考数学知识点归纳 各类统计图的优劣:条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

    近似数字和有效数字:①测量的结果都是近似的。②利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。③对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。

    平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X(上边一横)。

    加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。

    中位数与众数:①N个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。②一组数据中出现次数最大的那个数据叫做这个组数据的众数。③优劣:平均数:所有数据参加运算,能充分利用数据所提供的信息,因此在现实生活中常用,但容易受极端值影响;中位数:计算简单,受极端值影响少,但不能充分利用所有数据的信息;众数:各个数据如果重复次数大致相等时,众数往往没有特别的意义。

    调查:①为了一定的目的而对考察对象进行的全面调查,称为普查,其中所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。②从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。③抽样调查只考察总体中的一小部分个体,因此他的优点是调查范围小,节省时间,人力,物力和财力,但其调查结果往往不如普查得到的结果准确。为了获得较为准确的调查结果,抽样时要主要样本的代表性和广泛性。

    频数与频率:①每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。②当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。

    2、概率

    可能性:①有些事情我们能确定他一定会发生,这些事情称为必然事件;有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;必然事件和不可能事件都是确定的。②有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。③一般来说,不确定事件发生的可能性是有大小的。

    概率:①人们通常用1(或100%)来表示必然事件发生的可能性,用0来表示不可能事件发生的可能性。②游戏对双方公平是指双方获胜的可能性相同。③必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0〈P(A)〈1。

    地址:宜宾市翠屏区文重街30号

    联系人:林老师

    TEL:***

    -博雅教育 一对一精英辅导 中考数学知识点归纳

    第二部分 基本定理归纳

    1、过两点有且只有一条直线

    2、两点之间线段最短

    3、同角或等角的补角相等

    4、同角或等角的余角相等

    5、过一点有且只有一条直线和已知直线垂直

    6、直线外一点与直线上各点连接的所有线段中,垂线段最短

    7、平行公理

    经过直线外一点,有且只有一条直线与这条直线平行

    8、如果两条直线都和第三条直线平行,这两条直线也互相平行

    9、同位角相等,两直线平行

    10、内错角相等,两直线平行

    11、同旁内角互补,两直线平行

    12、两直线平行,同位角相等

    13、两直线平行,内错角相等

    14、两直线平行,同旁内角互补

    15、定理

    三角形两边的和大于第三边

    16、推论

    三角形两边的差小于第三边

    17、三角形内角和定理

    三角形三个内角的和等于180°

    18、推论1 直角三角形的两个锐角互余

    19、推论2 三角形的一个外角等于和它不相邻的两个内角的和 20、推论3 三角形的一个外角大于任何一个和它不相邻的内角

    21、全等三角形的对应边、对应角相等

    22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

    23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

    24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

    25、边边边公理(SSS)有三边对应相等的两个三角形全等

    26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

    27、定理1 在角的平分线上的点到这个角的两边的距离相等

    28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上

    29、角的平分线是到角的两边距离相等的所有点的集合

    30、等腰三角形的性质定理

    等腰三角形的两个底角相等

    (即等边对等角)

    31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

    32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

    33、推论3 等边三角形的各角都相等,并且每一个角都等于60°

    34、等腰三角形的判定定理

    如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

    35、推论1 三个角都相等的三角形是等边三角形

    36、推论 有一个角等于60°的等腰三角形是等边三角形

    地址:宜宾市翠屏区文重街30号

    联系人:林老师

    TEL:***

    -博雅教育 一对一精英辅导 中考数学知识点归纳

    37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

    38、直角三角形斜边上的中线等于斜边上的一半

    39、定理

    线段垂直平分线上的点和这条线段两个端点的距离相等

    40、逆定理

    和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

    41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

    42、定理1 关于某条直线对称的两个图形是全等形

    43、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

    44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

    45、逆定理

    如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

    46、勾股定理

    直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2

    47、勾股定理的逆定理

    如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形

    48、定理

    四边形的内角和等于360°

    49、四边形的外角和等于360°

    50、多边形内角和定理

    n边形的内角的和等于(n-2)×180°

    51、推论

    任意多边的外角和等于360°

    52、平行四边形性质定理1 平行四边形的对角相等

    53、平行四边形性质定理2 平行四边形的对边相等

    54、推论

    夹在两条平行线间的平行线段相等

    55、平行四边形性质定理3 平行四边形的对角线互相平分

    56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

    57、平行四边形判定定理2 两组对边分别相等的四边

    形是平行四边形

    58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形

    59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60、矩形性质定理1 矩形的四个角都是直角 61、矩形性质定理2 矩形的对角线相等

    62、矩形判定定理1 有三个角是直角的四边形是矩形 63、矩形判定定理2 对角线相等的平行四边形是矩形 64、菱形性质定理1 菱形的四条边都相等

    65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66、菱形面积=对角线乘积的一半,即S=(a×b)÷2 67、菱形判定定理1 四边都相等的四边形是菱形 68、菱形判定定理2 对角线互相垂直的平行四边形是菱形 69、正方形性质定理1 正方形的四个角都是直角,四条边都相等

    70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

    71、定理1 关于中心对称的两个图形是全等的

    地址:宜宾市翠屏区文重街30号

    联系人:林老师

    TEL:***

    -博雅教育 一对一精英辅导 中考数学知识点归纳 72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73、逆定理

    如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

    74、等腰梯形性质定理

    等腰梯形在同一底上的两个角相等 75、等腰梯形的两条对角线相等

    76、等腰梯形判定定理

    在同一底上的两个角相等的梯

    形是等腰梯形 77、对角线相等的梯形是等腰梯形

    78、平行线等分线段定理

    如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

    79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

    80、推论2

    经过三角形一边的中点与另一边平行的直线,必平分第三边 81、三角形中位线定理

    三角形的中位线平行于第三边,并且等于它的一半

    82、梯形中位线定理

    梯形的中位线平行于两底,并且等于两底和的一半

    L=(a+b)÷2

    S=L×h 83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc;如果

    ad=bc ,那么a:b=c:d 84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d 85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0), 那么(a+c+…+m)/(b+d+…+n)=a/b 86、平行线分线段成比例定理

    三条平行线截两条直线,所得的对应线段成比例

    87、推论

    平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

    88、定理

    如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

    89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

    90、定理

    平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

    91、相似三角形判定定理1

    两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93、判定定理2

    两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3

    三边对应成比例,两三角形相似(SSS)

    95、定理

    如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

    96、性质定理1

    相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

    97、性质定理2 相似三角形周长的比等于相似比 98、性质定理3 相似三角形面积的比等于相似比的平方

    99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值 100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

    地址:宜宾市翠屏区文重街30号

    联系人:林老师

    TEL:***

    -博雅教育 一对一精英辅导 中考数学知识点归纳 101、圆是定点的距离等于定长的点的集合

    102、圆的内部可以看作是圆心的距离小于半径的点的集合 103、圆的外部可以看作是圆心的距离大于半径的点的集合 104、同圆或等圆的半径相等

    105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线 107、到已知角的两边距离相等的点的轨迹,是这个角的平分线

    108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线 109、定理

    不在同一直线上的三点确定一个圆。

    110、垂径定理

    垂直于弦的直径平分这条弦并且平分弦所对的两条弧

    111、推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

    112、推论2 圆的两条平行弦所夹的弧相等 113、圆是以圆心为对称中心的中心对称图形

    114、定理

    在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

    115、推论

    在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

    116、定理

    一条弧所对的圆周角等于它所对的圆心角的一半

    117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

    118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径 119、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120、定理

    圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 121、①直线L和⊙O相交

    d﹤r[;②直线L和⊙O相切

    d=r ③直线L和⊙O相离

    d﹥r 122、切线的判定定理

    经过半径的外端并且垂直于这条半径的直线是圆的切线 123、切线的性质定理

    圆的切线垂直于经过切点的半径 124、推论1 经过圆心且垂直于切线的直线必经过切点 125、推论2 经过切点且垂直于切线的直线必经过圆心

    126、切线长定理

    从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角

    127、圆的外切四边形的两组对边的和相等

    128、弦切角定理

    弦切角等于它所夹的弧对的圆周角

    129、推论

    如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 130、相交弦定理

    圆内的两条相交弦,被交点分成的两条线段长的积相等

    131、推论

    如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项 132、切割线定理

    从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线地址:宜宾市翠屏区文重街30号

    联系人:林老师

    TEL:***

    -博雅教育 一对一精英辅导 中考数学知识点归纳 段长的比例中项

    133、推论

    从圆外一点引圆的两条割线,这一点到每条

    割线与圆的交点的两条线段长的积相等

    134、如果两个圆相切,那么切点一定在连心线上 135、①两圆外离

    d﹥R+r;②两圆外切

    d=R+r ③两圆相交

    R-r﹤d﹤R+r(R﹥r);④两圆内切

    d=R-r(R﹥r)⑤两圆内含

    d﹤R-r(R﹥r)136、定理

    相交两圆的连心线垂直平分两圆的公共弦 137、定理

    把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n边形

    ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 138、定理

    任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 139、正n边形的每个内角都等于(n-2)×180°/n 140、定理

    正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 141、正n边形的面积Sn=pnrn/2

    p表示正n边形的周长 142、正三角形面积√3a/4

    a表示边长

    143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 144、弧长计算公式:L=n兀R/180 145、扇形面积公式:S扇形=n兀R^2/360=LR/2 146、内公切线长= d-(R-r)

    外公切线长= d-(R+r)

    地址:宜宾市翠屏区文重街30号

    联系人:林老师

    TEL:***

    -博雅教育 一对一精英辅导 中考数学知识点归纳

    第三部分 常用公式归纳

    公式分类

    公式表达式 乘法与因式分解

    a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式

    |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b|-|a|≤a≤|a| 一元二次方程的解

    -b+√(b2-4ac)/2a-b-√(b2-4ac)/2a 根与系数的关系

    X1+X2=-b/a X1*X2=c/a

    注:韦达定理 判别式

    b2-4ac=0

    注:方程有两个相等的实根 b2-4ac>0

    注:方程有两个不等的实根 b2-4ac<0

    注:方程没有实根,有共轭复数根 某些数列前n项和

    1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14++n2=n(n+1)(2n+1)/6 13+23+33+43+53+63++n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R。注:其中

    R 表示三角形的外接圆半径 余弦定理b2=a2+c2-2accosB;

    注:角B是边a和边c的夹角

    n3=n2(n+1)2/4

    1*2+2*3+3*4+4*5+5*6+6*7+

    +(2n)=n(n+1)

    12+22+32+42+52+62+72+82+

    地址:宜宾市翠屏区文重街30号

    联系人:林老师

    TEL:***

    -博雅教育 一对一精英辅导 中考数学知识点归纳

    第四部分 基本方法归纳

    1、配方法:所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

    2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

    3、换元法:换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

    4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

    韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

    5、待定系数法:在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

    6、构造法:在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造地址:宜宾市翠屏区文重街30号

    联系人:林老师

    TEL:***

    -博雅教育 一对一精英辅导 中考数学知识点归纳 法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

    7、反证法:反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

    反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一个、一个也没有;至少有n个、至多有(n一1)个;至多有一个、至少有两个;唯

    一、至少有两个。

    归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

    8、面积法:平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。

    用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

    9、几何变换法:在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

    几何变换包括:(1)平移;(2)旋转;(3)对称。

    10、客观性题的解题方法:选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。

    填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。

    要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。

    (1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。

    (2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。

    (3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得地址:宜宾市翠屏区文重街30号

    联系人:林老师

    TEL:***

    -博雅教育 一对一精英辅导 中考数学知识点归纳 解答。这种方法叫特殊元素法。

    (4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。

    (5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。

    (6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。

    第五部分 辅助线作法归纳

    人说几何很困难,难点就在辅助线。

    辅助线,如何添?

    把握定理和概念。还要刻苦加钻研,找出规律凭经验。

    图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。

    角平分线平行线,等腰三角形来添。

    地址:宜宾市翠屏区文重街30号

    联系人:林老师

    TEL:***

    -博雅教育 一对一精英辅导 中考数学知识点归纳

    角平分线加垂线,三线合一试试看。

    线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。

    三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。

    平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。

    平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。

    等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。

    斜边上面作高线,比例中项一大片。半径与弦长计算,弦心距来中间站。

    圆上若有一切线,切点圆心半径连。切线长度的计算,勾股定理最方便。

    要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。

    弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。

    弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。

    还要作个内接圆,内角平分线梦圆。如果遇到相交圆,不要忘作公共弦。

    内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。

    要作等角添个圆,明题目少困难。辅助线,是虚线,画图注意勿改变。

    假如图形较分散,对称旋转去实验。基本作图很关键,平时掌握要熟练。

    解题还要多心眼,经常总结方法显。切勿盲目乱添线,方法灵活应多变。

    分析综合方法选,难再多也会减。虚心勤学加苦练,成绩上升成直线。

    地址:宜宾市翠屏区文重街30号

    联系人:林老师

    TEL:***



    中考数学总结.docx

    将本文的Word文档下载到电脑

    推荐度:

    下载
    热门标签: TAGS1 TAGS2 TAGS3 TAGS4 TAGS5
    ADADAD
    热门栏目